BIOSYNTHESIS in vitro OF A GLOBOSIDE CONTAINING A 2-ACET-AMIDO-2-DEOXY-β-D-GALACTOPYRANOSYL GROUP (1→3)-LINKED AND FORSSMAN GLYCOLIPID BY TWO N-ACETYLGALACTOSAMINYL-TRANSFERASES FROM CHEMICALLY TRANSFORMED GUINEA PIG CELLS*

KAMAL K. DAS, MANJU BASU[†], SUBHASH BASU[‡],

Department of Chemistry, Biochem. Biophys. and Mol. Biol. Prog., University of Notre Dame, Notre Dame, Indiana 46556 (U.S.A.)

AND CHARLES H. EVANS

National Cancer Institute, Bethesda, Maryland 20205 (U.S.A.) (Received April 16th, 1985; accepted for publication, June 17th, 1985)

ABSTRACT

Two N-acetylgalactosaminyltransferase activities (GalNAcT-2 and Gal-NAcT-3) have been characterized in chemically transformed, cultured guinea-pig cell lines (104C1 and 106B). Line 104C1 is a benz[a]pyrene-transformed tumorigenic variant, whereas line 106B is a 7,12-dimethylbenz[a]anthracene-transformed nontumorigenic variant obtained from fetal guinea-pig cells at 43 days of gestation. The GalNAcT-2 (UDP-GalNAc: GbOse₃Cer β-N-acetylgalactosaminyltransferase) isolated from both 104C1 and 106B cells catalyzed the transfer of Gal-NAc from UDP-GalNAc to the ³H-labeled terminal galactose group of Gb3 ([6- ^{3}H]Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glc \rightarrow Cer). The ^{3}H -labeled globoside was purified and then subjected to exhaustive methylation. After acetolysis, the partially methylated sugars were separated by two-dimensional, thin-layer chromatography. ³H-Label was detected in two major areas, 2,4,6-tri-O-Me-Gal (40%) and 2,3,4,6-tetra-O-Me-Gal (46%). In a separate experiment, 80% of the GalNAc was released when labeled GbOse₄Cer ([3H]GalNAc→Galα1→4Galβ1→4Glc→Cer) was treated with purified clam β -hexosaminidase. The present results establish the formation of a B-D-GalpNAc-(1→3) linkage in the terminal region of the biosynthesized globoside.

GalNAcT-3 activity (UDP-GalNAc:GbOse₄Cer α -GalNAc-transferase), which catalyzes the transfer of GalNAc from UDP-[14 C]- or -[3 H]GalNAc to GbOse₄Cer (GalNAc β 1 \rightarrow 3Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glc \rightarrow Cer), was three times higher

^{*}This work was supported by a Grant (CA-14764) from the National Cancer Institute and NS-18005 from NIH to S.B.

[†]Recipient of United States Public Health Service New Investigator Research Award 1R23 CA-33751.

[‡]To whom correspondence should be addressed.

in 106B cells than in 104C1 cells. The isolated, purified radioactive product formed an immunoprecipitin line against rabbit anti-Forssman antibody.

INTRODUCTION

Forssman glycolipid is a pentaglycosylceramide having a terminal 2-acetamido-2-deoxy- α -D-galactopyranosyl group present in erythrocytes of several Forssman-positive animals. The occurrence of Forssman antigen was first demonstrated¹ in 1911. The structure of the globoside (β -D-GalpNAc-(1 \rightarrow 3)- α -D- $Galp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-Glc-(1\rightarrow 1)-Cer$; $GbOse_{a}Cer$; 2), which is probably a precursor of Forssman antigen, was first reported by Yamakawa et al.^{2,3} and Makita et al.4.5. The revised structures of globoside and Forssman glycosphingolipid (GalNAcα1→3GbOse₄Cer) were established by Hakomori and associates^{6,7}. The structure of the Forssman antigen from equine spleen⁷, ovine and caprine erythrocytes^{8,9},, and canine erythrocytes¹⁰ has also been reported. The structure of cytolipin R, which is closely related to globoside, except for the α -D- $(1\rightarrow 3)$ internal linkage, has been established for murine tissues^{11,12}. Although the guinea pig is a Forssman-positive animal, the major glycolipid present in guinea pig erythrocytes is a triglycosylceramide, GgOse₃Cer (GalNAcβ1→4Galβ1→4Glc-Cer; 1), as shown by Seyama and Yamakawa¹³. We have reported the biosynthesis, in vitro, of this glycosphingolipid (GSL) from lactosylceramide and UDP-[14C]Gal-NAc by the use of an enzyme obtained from the bone-marrow membrane of guineapig, GalNAcT-1 [UDP-GalNAc:Lac→Cer(β1→4)GalNAc-transferase]¹⁴.

The stepwise biosynthesis, *in vitro*, of globoside was reported for an embryonic chicken-brain system¹⁵. The conversion of globoside to Forssman antigen has been achieved with guinea pig kidney membranes^{16,17} and with cultured mouse adrenal Y-1-K tumor¹⁸, as well as with guinea pig 104C1 cells¹⁹. A tandem mechanism of Forssman GSL biosynthesis has been proposed²⁰. Makita and associates, using dog spleen microsomes, have solubilized and purified the enzyme catalyzing the synthesis²¹ of Forssman GSL from globoside²². However, the exact chemical structures of the biosynthesized products, globoside and Forssman glycosphingolipids, are not yet known.

We report herein the biosynthesis in vitro of Forssman GSL (3) from globotriaosylceramide (GbOse₃Cer; 1) via globoside (GbOse₄Cer; 2) by two types of chemically transformed, guinea pig cells, 104C1 (tumorigenic) and 106B (non-tumorigenic)^{23,24}. We have identified, in these cell lines, two distinct N-acetyl-galactosaminyltransferases, β GalNAcT-2 and α GalNAcT-3 that catalyze reactions (1) and (2).

Galα1
$$\rightarrow$$
4Galβ1 \rightarrow 4Glc \rightarrow Cer (GbOse₃Cer) (1) + UDP-[¹⁴C]- or UDP-[³H]-
GalNAc $\xrightarrow{\beta$ GalNAcT-2
Mn²⁺
[¹⁴C]- or [³H]-GalNAcβ1 \rightarrow 3Galα1 \rightarrow 4Galβ1 \rightarrow 4Glc \rightarrow Cer
(GbOse₄Cer) (2) + UDP

GbOse₄Cer (2) + UDP-[¹⁴C]- or UDP-[³H]-GalNAc
$$\xrightarrow{\alpha}$$
GalNAcT-3 $\xrightarrow{Mn^{2+}}$ [¹⁴C]- or [³H]-GalNAc α 1 \rightarrow 3GalNAc β 1 \rightarrow 3Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glc \rightarrow Cer (Forssman GSL) (3)

EXPERIMENTAL

Materials. — The following materials were obtained from commercial sources: sodium taurocholate (Sigma Chemical Co.); Florisil (Fisher Scientific Products); Unisil (Clarkson Chemical Co.); Silica gel G (Brinkman Instruments); and Whatman 3MM paper (Scientific Products). Purified protein A from Staphylococcus aureus was purchased from Pharmacia Fine Chemicals and iodinated by the Chloramine-T method²⁵. Tissue culture flasks were purchased from Corning Glass Works. RPMI-1640 medium, fetal calf serum, penicillin, and streptomycin were obtained from Gibco Laboratories. All the glycosphingolipids used as substrates were prepared in our laboratory according to previously published methods: Globoside (GbOse₄Cer) (2) and globotriaosylceramide (GbOse₃Cer) (1) were isolated from pig heart¹⁵ and rabbit erythrocytes²⁶, respectively; Forssman glycolipid was isolated from sheep erythrocytes by the use of a newly developed, radial thin-layer chromatographic method²⁷. Before use as substrates, the purified glycolipids were analyzed by g.l.c.-m.s. M.s. data were interpreted according to Björndal et al. 28 and Sung et al. 10. Jack bean β -hexosaminidase and a mixture of clam α - and β -hexosaminidases²⁹ were prepared in our laboratory. Rabbit anti-Forssman antibody was prepared according to the method used for preparation of anti-globoside serum³⁰. UDP-D-[14C]GalNAc of high specific activity was purchased from New England Nuclear. Unlabeled UDP-D-GalNAc was prepared according to the method of Carlson et al.31.

Cell culture. — Guinea pig clonal cells 104C1 and 106B were grown and maintained in culture routinely in our laboratory. Both cell lines are chemically transformed variants of fetal cells at 43 days of gestation²³. 104C1 is a benz[a]-pyrene-transformed tumorigenic variant, whereas 106B is a 7,12-dimethylbenz[a]-anthracene-transformed nontumorigenic clone. The culture were grown in 250-mL plastic T-flasks containing RPMI-1640 medium (15 mL) supplemented with 10% fetal calf serum in the presence of penicillin (100 units/mL) and streptomycin (100 μ g/mL). The cells were incubated in a humidified atmosphere of 95% air and 5% CO₂ (pH 7.0) at 37°. The medium was changed once before harvesting. The cells were subcultured, when the monolayer reached confluence, by use of 0.25% of trypsin and harvested with phosphate-buffered saline (PBS) containing 0.1% EDTA.

Preparation of enzyme. — The enzymes that catalyze the stepwise biosynthesis of Forssman glycolipid were detected in homogenates of both 104C1 and 106B cells. All steps of enzyme preparation were carried out at 0-4°. The packed

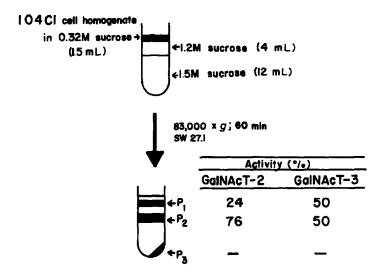


Fig. 1. Fractionation of 104C1 cell membranes.

cells (0.2–0.5 mL) were homogenized in 0.32M sucrose, mm EDTA, and 0.14mm mercaptoethanol (SME) (3 vol.) according to our previously published method³² with a Polytron 10-ST homogenizer for 20–30 s. The homogenate was then layered on top of a discontinuous sucrose gradient (1.2 and 1.5M) and centrifuged for 1 h at 83 000 g in a swinging bucket rotor (SW 27.1) in a Beckman ultracentrifuge (Model L2-65B). Both β -GalNAcT-2 and α -GalNAcT-3 activities were isolated in membrane fractions P_1 (at the junction of 0.32 and 1.0M SME), P_2 (membrane fraction at the junction of 1.0 and 1.5M SME), and P_3 (pellet at the bottom of 1.5M SME). However, the relative activities of these two enzymes were different in these membrane fractions (Fig. 1), as discussed later.

Enzyme assay. — Complete incubation mixtures contained the following components in a final volume of 50 μL: acceptor glycosphingolipid (GbOse₃Cer or GbOse₄Cer) (25–50 nmol); Triton DF-12 detergent (GalNAcT-2, P/D 1.5; Gal-NAcT-3, P/D 2.0); HEPES buffer (GalNAcT-2), cacodylate · HCl(GalNAcT-3), 10 μmol, pH 7.0; MnCl₂ (0.25 nmol); UDP-[³H]- or [¹⁴C]-GalNAc (10–15 nmol; 3–5 × 10⁶ c.p.m./μmol); and enzyme fraction P₃ or homogenate (0.1–0.3 mg of protein estimated by the method of Lowry et al.³³). The mixture was incubated for 1–2 h, and the reaction was stopped by addition of 0.25m EDTA (10 μL) and methanol (10 μL). Incubation mixtures containing [¹⁴C]GbOse₄Cer (2) and [¹⁴C]GbOse₅Cer (3) were then assayed by a double chromatographic technique in 1% Na₂B₄O₇, followed by reverse chromatography in 10:5:1 (v/v) chloroformmethanol-water on Whatman 3MM paper according to a previously published method¹⁵. Incubation mixtures containing [³H]GbOse₄Cer and [³H]GbOse₅Cer were spotted directly on SG-81 paper³⁴ and chromatographed in descending fashion in 1% Na₂B₄O₇ (pH 9.1). The radioactivity of the product was determined quantita-

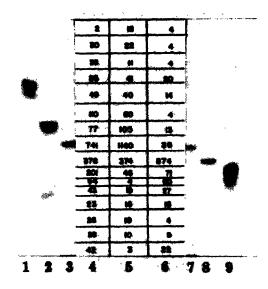


Fig. 2. Thin-layer chromatography of ¹⁴C-labeled Forssman products: (1) LacCer (Galβ1→4Glc→Cer); (2) GbOse₃Cer (1); (3) GbOse₄Cer (2); (4) [¹⁴C]GbOse₄Cer (2) (1500 c.p.m. from the 104C1 GalNAcT-2-catalyzed reaction); (5) [³H]GbOse₄Cer (2) (2500 c.p.m. from the 106B GalNAcT-2-catalyzed reaction); (6) [³H]GbOse₅Cer (2500 c.p.m. from the 106B GalNAcT-3-catalyzed reaction); (7) GbOse₄Cer (2) (porcine erythrocytes); (8) Forssman GSL 3; ovine erythrocytes); and (9) nLcOse₅Cer (Galα1→3Galβ1→4GlcNAcβ1→3Galβ1→4Glc-Cer), rabbit erythrocytes). The plate was developed in a solvent system of 11:9:2 (v/v) chloroform—methanol–0.2% CaCl₂ in water. Lanes 4, 5, and 6 were scraped and the radioactivity was counted in a liquid-scintillation system; the results are shown by numbers. The spots in the other lanes were detected by spraying with the diphenyl-amineaniline reagent.

tively by counting appropriate areas in a toluene scintillation system using a Beckman scintillation counter (Model 3133T).

Isolation and purification of radioactive products. — The radioactive products of both reactions (104C1 and 106B) were isolated from incubation mixtures the volume of which had been increased 30-fold (1.5 mL). After incubation for 12 h at 37°, the reactions were stopped by adding 0.25M EDTA (10 μ L, pH 7.0). The content of each reaction tube was spotted on SG-81 paper and chromatographed in descending fashion in 1% Na₂B₄O₇. After the paper had been developed and dried, the origin including 2.5 cm on either side was cut from each sheet and the radioactive products were eluted from the strips with 60:35:8 (v/v) chloroform—methanol—water. Further purification of the radioactive products extracted from SG-81 was achieved by chromatography on a Bio-Sil column (0.7 × 9 cm) with increasing concentrations of methanol in chloroform. The final purity of the radioactive product was monitored by t.l.c. on Silica gel G plates with authentic substrates (Fig. 2).

 α - and β -Hexosaminidase treatment of the radioactive products. — The purified radioactive products (2 and 3) were hydrolyzed with jack bean or clam hexosaminidase for 12 h at 37° as follows: ¹⁴C- or ³H-products (1000–2000 c.p.m.); detergent (sodium taurodeoxycholate, 50 μ g); 0.25mM sodium citrate phosphate

buffer (pH 4.5); and enzyme protein (1–5 munits:1 unit of enzyme hydrolyzes 1.0 μ mol of p-nitrophenyl 2-acetamido-2-deoxy- α - or - β -D-galactopyranoside per min) of either jack bean β -hexosaminidase²⁹ or α - and β -hexosaminidases from clam³⁵. After reduction with NaBH₄, the cleaved radioactive 2-acetamido-2-deoxy-D-galactitol was recovered by p.c. in 1% Na₂B₄O₇. The appropriate areas of the chromatograms were analyzed quantitatively by a liquid scintillation technique.

Binding of [^{125}I]Protein A to Forssman antibody-bound cell surfaces. — Rabbit anti-Forssman antibody was produced according to a modification of our previously published method 15 . Newly harvested, guinea pig tumor cells (5×10^4) were placed on 96-hole microtiter plates (MTP) and incubated for 18 h at 37° with RPMI-1640 (0.1 mL/hole) containing 10% fetal bovine serum in a humidified atmosphere of 95% air and 5% CO $_2$. After the addition of anti-Forssman antibody ($50~\mu$ L) in the dilutions indicated in Fig. 10, the MTP was kept at room temperature for 60 min. The excess antibody was washed three times with phosphate-buffered saline (PBS, Ix), and then [^{125}I]protein A ($50~\mu$ L, 1 mg/mL) was added to each well and incubated at room temperature for 30 min 36 . The excess, radiolabeled protein A was washed three times with 0.1% ovalbumin-containing PBS (Ix), and 1.0m NaOH was added to each well (0.1 mL). The alkaline mixture from each well was removed into a plastic minivial with filter paper, and the radioactivity was quantitatively determined with a Beckman gamma counter.

RESULTS

Requirements. — The complete incubation mixture needed the presence of Mn^{2+} (Table I) for both the GalNAcT-2- and the GalNAcT-3-catalyzed reactions. Of many detergents tested (Table II), Triton DF-12 stimulated the highest activity at the indicated protein-to-detergent ratio, between 1.5 and 2.0 (Fig. 3). Both reaction rates remained constant up to 2 h over a range of protein concentrations from 0.1 to 0.3 mg/50 μ L of incubation mixture.

When GbOse₃Cer (3) was used as substrate, the GalNAcT enzymes isolated from 106B and 104C1 showed two different pH profiles (Fig. 4). For 104C1, only one pH optimum, at pH 7.1, was observed. However, two distinct pH optima (7.1 and 7.9) in HEPES buffer were observed with 106B cell-derived GalNAcT using GbOse₃Cer (3) as substrate. The pH optimum for GalNAcT-3 activity in both 104C1 and 106B was pH 7.0 in cacodylate · HCl buffer.

Substrate specificity. — The effects of various concentrations of GbOse₃Cer (1) on the rate of reaction are shown in Figs. 5A and 5B. The calculated $K_{\rm m}$ values were 160 and 110 μ m with GalNAcT-2 activities isolated from 104C1 and 106B, respectively. The apparent $K_{\rm m}$ value was 180 μ m (Fig. 6) with 106B GalNAcT-3 activity when GbOse₄Cer (globoside, 2) was used as an acceptor. The apparent $K_{\rm m}$ values for UDP-[¹⁴C]GalNAc with GalNAcT-2 from 104C1 and 106B were 130–140 μ m (Figs. 7A and 7B).

TABLE I REQUIREMENTS FOR GSL: N-acetylgalactosaminyltransferases from guinea pig transformed cells⁴

Incubation mixture	[3H]GalNAc incorporated (nmol/mg of protein/2 h)			
	GalNAc-T-2		GalNAcT-3	
	104C1	106B	104C1	106B
Complete	1.82	3.1	0.9	1.5
Complete minus substrate	0.62	1.1	0.59	0.64
Complete minus detergent	0.99	2.1	0.67	0.84
Complete minus Mn ²⁺	0.17	0.19	0.21	0.33
Complete minus Mn ²⁺ plus EDTA (1.25 µmol)	0.3	0.98	0.13	0.30
Complete plus EDTA	0.15	0.26	0.29	0.20
Complete heat-killed enzyme	0.15	0.22	0.15	0.58

The complete incubation mixtures contained the following components in a final volume of 0.04 mL. GalNAc-2 assay: $GbOse_3Cer$ (1) (46 nmol), Triton DF-12 (150 μg ; protein/detergent 1.5:1), HEPES buffer (10 mmol, pH 7.0), $MnCl_2$ (0.2 mmol), $UDP-[^3H]GalNAc$ (35 000 c.p.m.; 4.6 \times 10° c.p.m./ μ mol), and enzyme protein (200 μg for 104C1 and 170 μg for 106B cells). GalNAcT-3 assay: The conditions were the same as given for the GalNAcT-2 assay except for the following: $GbOse_4Cer$ (4) (40 nmol) Triton DF-12 (100 μg , protein/detergent 2.0:1.0), and cacodylate \cdot HCl buffer (10 mmol, pH 7.0). After 2 h at 37°, the mixtures were analyzed by 1% $Na_2B_4O_7$ descending chromatography on SG-81 paper as described in the Experimental section. The radioactive product remained at the origin and was quantitatively determined in a liquid-scintillation system. The rates of the reactions remained constant until 2 h and were proportional to protein concentration up to 5 mg/mL.

TABLE II

EFFECT OF VARIOUS DETERGENTS ON GAINACT ACTIVITIES^a

Detergents ^b	[3H]GalNAc incorporated (pmol/mg of protein/h)			
	GalNAcT-2		GalNAcT-3	
	104C1	106B	104C1	106B
Triton DF-12	1047	1177	94	1653
Triton CF-54	7 78	1234	99	432
Triton X-100	378	992	24	80
Nonidet P-40	450	986	44	164
Taurocholate	175	122	77	49
Octyl glucopyranoside	224	380	80	150
Cutscum	350	1062	0	226
Zwittergent	355	818	0	0

[&]quot;The incubation conditions were the same as described in the footnote to Table I, except that various detergents were used. "The ratios of protein to detergent for GalNAcT-2 and GalNAcT-3 were 1.5 and 2.0, respectively.

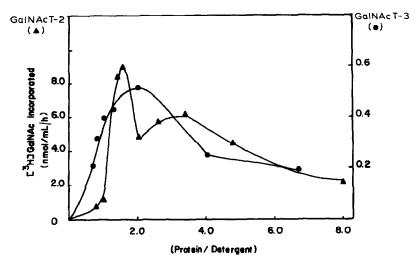


Fig. 3. Effect of detergent concentration on β GalNAcT-2 and α GalNAcT-3 activities. The complete incubation mixture contained the components as described in the footnote to Table I, except that various concentrations of detergent (Triton DF-12) and 104C1 membrane-bound enzyme (4.4 mg/mL of protein) were used. The protein-to-detergent ratio was varied as indicated: GbOse₃Cer (\triangle) and GbOse₄Cer (\bigcirc) were used as substrates for GalNAcT-2 and GalNAcT-3 activities, respectively.

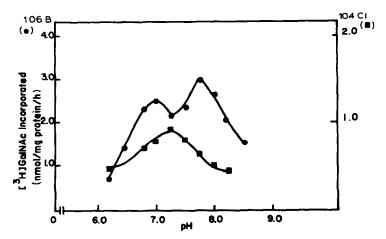


Fig. 4. Effect of pH on GalNAcT-2 activities, isolated from 104C1 and 106B cells with 1 as acceptor. The incubation conditions were the same as described in the footnote to Table I, except that HEPES buffer was used over the pH range 6.2-8.75. The incubation mixtures were incubated for 2 h at 37° and analyzed by SG-81 chromatography.

The incorporation of [14C]GalNAc into various potential acceptors was tested with UDP-[14C]GalNAc as nucleotide donor and GalNAcT-2 plus GalNAcT-3-enriched membrane fractions (Table III). Both lactosylceramide and GM3 were almost inactive as substrates, whereas GbOse₃Cer (1) and GbOse₄Cer (2) were the most active substrates with membrane preparations isolated from untransformed,

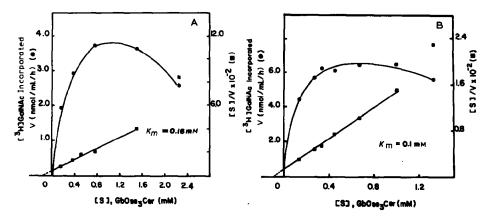


Fig. 5. Effect of GbOse₃Cer (1) concentration on the rate of formation of radioactive globoside. The experimental conditions were the same as described in the footnote to Table I, except that various concentrations of 1 were used: (A) β GalNAcT-2 from 104C1 cells and (B) β GalNAcT-2 from 106B cells. All values have been corrected for endogenous compounds.

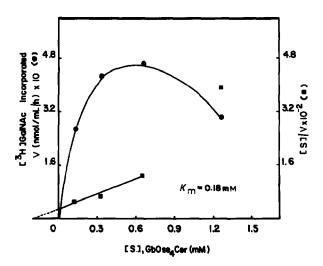


Fig. 6. Effect of globoside concentration on the rate of formation of radioactive Forssman GSL (3). The incubation conditions were the same as described in the footnote to Table I for GalNAcT-3, except that various concentrations of globoside 2 (GbOse₄Cer) were used. The values have been corrected for endogenous compounds.

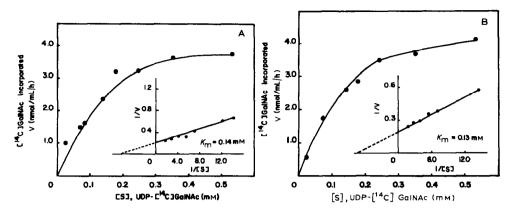


Fig. 7. Effect of donor concentration on the rate of formation of [14 C]GalNAc-GbOse₃Cer. The experimental conditions were the same as described in the footnote to Table I, except that various concentrations of UDP-[14 C]GalNAc (0.01 μ mol; 4.6 × 10⁶ c.p.m./ μ mol) were used: (A) β GalNAcT-2 from 104C1 cells and (B) β GalNAcT-2 from 106B cells. All values have been corrected for endogenous compounds.

Glycolipid Expected acceptor linkage in (0.5mm) the product	linkage in	[14C]GalNAc incorporated (pmol/mg of protein/2 h)		
	те ргошил	103	104C1	106B
None	(?)	470	360	470
LacCer	β -D- $(1\rightarrow 4)$	400	380	490
GM3	β-D-(1→4)	450	340	430
GbOse ₃ Cer (1)	β -D- $(1\rightarrow 3)$	1720	1250	1270
GbOse ₄ Cer (2)	α -D-(1 \rightarrow 3)	1000	580	1600
nLcOse ₄ Cer	β -D- $(1\rightarrow 3)(?)$	1070	930	810

The conditions were the same as described in the footnote to Table I except that various substrates and UDP-[14 C]GalNAc (10 nmol, 3.4 × 10 6 c.p.m./ μ mol) were used. After 2 h of incubation, the mixtures were analyzed by the chromatographic method described in the Experimental section.

guinea pig embryonic cells (103) and their chemically transformed variants (104C1 and 106B). The GalNAcT-2 activity in 104C1 and 106B remained almost the same, whereas the GalNAcT-3 activity in 106B was five times higher (after subtraction from endogenous values, Table III). However, the activity with nLcOse₄Cer was

TABLE IV	
TREATMENT OF RADIOACTIVE PI	RODUCTS WITH PURIFIED HEXOSAMINIDASES

Glycosidase	Radioactive GalNAc (%) released from			
	GalNAcT-2 products		GalNAcT-3 products	
	104C1	106B	106B	
Jack bean β-D-hexosaminidase (5.0 mu)	40	22	0	
Clam β-D-hexosaminidase (2.0 mu)	90	44	<9	
Clam α-D-hexosaminidase (4.0 mu)			61	

50% higher in 104C1 than in 106B, indicative of a different GalNAc-transferase.

Hydrolysis with hexosaminidases. — The radioactive products of GalNAcT-2 and GalNAcT-3 reactions from both 104C1 and 106B were treated separately with purified hexosaminidases. Jack bean \(\beta\)-hexosaminidase cleaved 48 and 22% of the radioactive 2-acetamido-2-deoxy-D-galactose from the GalNAcT-2-catalyzed products of 104C1 and 106B, respectively. When the same two radioactive products were treated with purified clam β -hexosaminidase, almost 90% (104C1) and 44% (106B) of the [14C]GalNAc was cleaved (Table IV). These results indicated the presence of mostly β -D-linked GalNAc groups at the terminus of the 104C1 Gal-NAcT-2-derived product, whereas the 106B GalNAcT-2 product could be a mixture of GbOse₄Cer and GbOse₅Cer (see Discussion). On the other hand, treatment of the radioactive product ([3H]GalNAc \rightarrow GalNAc β 1 \rightarrow 3Gal α 1 \rightarrow 4Gal- β 1 \rightarrow 4Glc \rightarrow Cer) of the 106B GalNAcT-3-catalyzed reaction with purified clam β hexosaminidase released less than 9% of the [3H]GalNAc. This result proved the absence of any β -D-linkage in the GalNAcT-3 catalyzed product. However, purified clam α-hexosaminidase cleaved 61% of the terminal 2-acetamido-2-deoxy-Dgalactopyranosyl group of the ¹⁴C-Forssman product obtained from 106B Gal-NAcT-3-catalyzed reaction.

Identification of the terminal GalNAc \rightarrow Gal linkage in the labeled-globoside product by permethylation studies. — ³H-Labeled GbOse₃Cer (1) ([6-³H]Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glc \rightarrow Cer) was prepared by oxidation of 1 with galactose oxidase, followed by reduction with NaB³H₄. By use of unlabeled UDP-GalNAc and [6-³H]GbOse₃Cer, the radioactive products (GalNAc β \rightarrow [6-³H]Gal α 1 \rightarrow 4Gal β 1 \rightarrow 4Glc \rightarrow Cer) of the 104C1 and 106B GalNAcT-2-catalyzed reactions were isolated and purified on a Bio-Sil column and by t.l.c. The purified product (~20 000-30 000 c.p.m.) was subjected to Hakomori permethylation, followed by acetolysis and hydrolysis. The permethylated, hydrolyzed products were mixed with nonradioactive, partially methylated galactose standards and were subjected to two-dimensional t.l.c. (Fig. 8). The spots were revealed with the diphenylamine spray and scraped, and the radioactivity in each spot was determined in a liquid-scintillation system. Almost 80-85% of the radioactivity was recovered from only

Fig. 8. Separation of partially methylated sugars by two-dimensional t.l.c. Methylated galactose standards were chromatographed in two directions in two different solvent systems. Solvent *I*: acetone-5% NH₄OH (50:1). Solvent *II*: acetone-28% NH₄OH-water (50:5:1). The spots were detected by spraying with the diphenylamine reagent and heating the plate for 1 h at 110°: (a) 2,3,4,6-tetra-*O*-Me-Gal, (b) 2,3,6-tri-*O*-Me-Gal, (c) 2,4,6-tri-*O*-Me-Gal, (e) 2,3,4-tri-*O*-Me-Gal, (f) 3,4,6-tri-*O*-Me-Gal, and (g) 2,3-di-*O*-Me-Gal.

TABLE V

DISTRIBUTION OF RADIOACTIVITY BETWEEN AREAS CONTAINING PARTIALLY METHYLATED GALACTOSE AFTER 2D T.L.C.4

Area	Permethylated sugar	GalNAc-[6- ³ H]GbOse ₃ Cer (% of radioactivity) from		
		104C1	106B	
a	2,3,4,6-Tetra- <i>O</i> -Me-Gal	46	55	
b	2,3,6-Tri- <i>O</i> -Me-Gal	2	5	
С	2,4,6-Tri-O-Me-Gal	40	25	
d	ь	0	2	
e	2,3,4-Tri- <i>O</i> -Me-Gal	2	3	
f	3,4,6-Tri- <i>O</i> -Me-Gal	1	5	
g	2,3-Di-O-Me-Gal	1	1	

^aPartially methylated galactose standards were mixed with radioactive, permethylated galactose (obtained from radioactive product, GalNAc→[6-³H]GbOse₃Cer) and subjected to two-dimensional t.l.c. as illustrated in Fig. 8. After the spots had been detected with the diphenylamine spray, the area of each visible spot was scraped and the radioactivity quantitatively determined in a toluene-scintillation system. ^bNot identified.

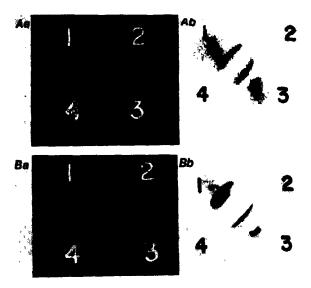


Fig. 9. Microimmunodiffusion pattern with ¹⁴C-labeled globoside and Forssman products: (A) The center well contained rabbit anti-Forssman antiserum, and the outer wells contained the following: Well 1, ¹⁴C-product (2000 c.p.m.) obtained from GbOse₃Cer (1) in the 106B GalNAcT-catalyzed reaction; Well 3, the same ¹⁴C-product (2000 c.p.m.) mixed with nonradioactive Forssman GSL (3) (in aqueous solution; Wells 2 and 4 contained aqueous solutions of GbOse₄Cer (2) and Forssman GSL (3) both 10 μg/10 μL), respectively. The precipitin lines were developed with Amido Black as described in the Experimental section. 9Ab is an autoradiogram of plate 9Aa exposed to Kodak X-omat AR X-ray film for 3 months. (B) The conditions were the same except that Well 1 contained the ¹⁴C-product (3000 c.p.m.) obtained from GbOse₄Cer (2) in the 106B GalNAcT-catalyzed reaction, and Well 3 the ¹⁴C-product (3000 c.p.m.) mixed with nonradioactive Forssman GSL (3) in aqueous solution. 9Bb is an autoradiogram of plate 9Ba exposed to Kodak X-omat AR X-ray film.

two areas, 2,3,4,6-tetra- and 2,4,6-tri-O-methylgalactose (Table V). Less than 5% of the radioactivity was detected in 2,3,4-tri- or 3,4,6-tri-O-methylgalactose with the radioactive globoside obtained from either the 104C1- or the 106B-derived Gal-NAcT-2 reaction. These results unambiguously proved the presence of a Gal-NAc1-3Gal linkage in the terminal region of these two biosynthetized globosides.

Microimmunodiffusion reaction. — A microimmunodiffusion plate was set up according to our previous procedure¹⁵ using rabbit anti-Forssman antibody in the center well (Fig. 9A and 9B). In Fig. 9Aa, the purified ¹⁴C-product obtained from the membrane-bound GalNAcT-catalyzed reaction (GSL, ¹⁴C-2 and ¹⁴C-3; 2000 c.p.m.) was placed in Well 1. Well 3 contained the same product (2000 c.p.m.) mixed with nonradioactive 3 (10 μ g). Nonradioactive 2 and 3 were placed in Wells 2 and 4, respectively. All samples were in 0.1% Triton X-100 solution. The plate was kept in a humidified chamber at 4° for 72 h. The precipitin lines were detected with 2% Amido Black (Fig. 9Aa). A radioautogram of the stained plate was obtained by exposure of the X-ray plate for 3 months (Fig. 9Ab); the ¹⁴C-product formed a precipitin line with rabbit anti-Forssman antibody (Wells 1 and 3), and

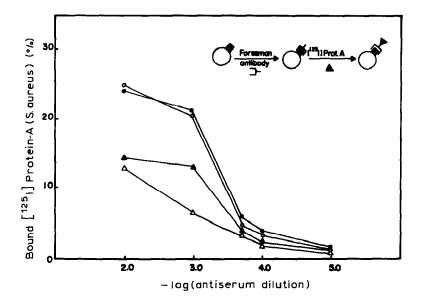
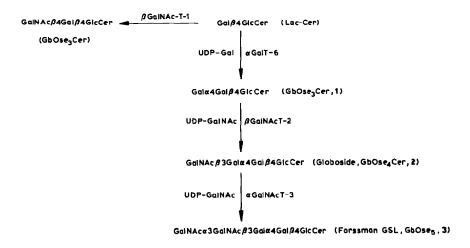


Fig. 10. Binding of [125 I]protein-A to Forssman antibody-bound cells: (—O—O—) Cells 103 (passage 50), (—O—O—) cells 106B (passage 120), (— \triangle —O—) cells 107C3 (passage 24), and (— \triangle —O—) cells 1046C (passage 30).

the line fused with that of nonradioactive Forssman GSL (3) (Well 4). This suggests that the product of the GalNAcT-2-catalyzed reaction may have been converted partly into Forssman GSL by a tandem reaction²⁰ in the presence of GalNAcT-3 in the membrane preparation.

A second set of microimmunodiffusion plates was set up with the ¹⁴C-product from the GalNAcT-3-catalyzed reaction (Fig. 9B). Anti-Forssman antibody was placed in the center well. Well 1 contained the purified ¹⁴C-product from 2 as substrate (3000 c.p.m.), and Well 3 had the same amount of radioactive product mixed with nonradioactive Forssman GSL (3) in aqueous solution. Wells 2 and 4 had the aqueous solutions of nonradioactive 2 and 3, respectively. The reaction was continued for 72 h, and the plate was developed as described earlier. As seen in Fig. 9Bb, the radioactive band from the ¹⁴C-product fused with that from nonradioactive Forssman antibody, indicating the presence of radioactive 3 in the Gal-NAcT-3-catalyzed reaction.


Anti-Forssman antibody binding to cell surfaces. — Polyclonal antibodies against GalNAc α 1-3-R (Forssman glycoconjugates) have been isolated from rabbit serum and used as a probe to determine the carbohydrate profile of the guinea pig, tumor-cell surface and the tentative structures of the glycoconjugates. Binding of anti-Forssman antibody to embryonic, guinea pig cell line 103 and its chemically transformed variants (106B, 107C3, and 104C1) was quantitatively determined by further binding with [125 I]protein A (Fig. 10). Both cell lines 103 and 106B are

nontumorigenic and appeared to have 50% more Forssman glycoconjugate at the surfaces than the tumorigenic variants, 107C3 and 104C1. 107C3 cells had the fewest Forssman-type receptors on the surfaces.

DISCUSSION

The pattern of glycosphingolipids of the Forssman type³⁷ on tumor cell surfaces of primate and nonprimate origin is not well understood. Forssman-positive animals contain either Forssman GSL (3) or both 2 and 3 in their tissues and in erythrocytes. It is expected that the precursor globoside 2 is the major GSL in human erythrocytes, although normal human tissues do not contain any Forssman-positive GSL. However, expression of Forssman antigen in gastric and colonic mucosa of human cancer patients has been detected³⁸. By use of a radio-immunoassay³⁹, a few more Forssman-positive human cancer cases have been reported. Anti-Forssman antibodies in sera from human cancer patients have also been detected⁴⁰.

If Forssman antigen 3 or its intermediate 2 is related to metastasis or any tumorigenic process, the gene for α GalNAcT-3 might be controlled during the oncogenic process. It also became important to understand the mechanism of stepwise biosynthesis of Forssman antigen in any tumor system (Scheme 1). Both 104C1 (tumorigenic) and 106B (nontumorigenic) cultured cells from guinea pig embryos represent appropriate model systems for studying (a) the specificity of the two different *N*-acetylgalactosaminyltransferases (β GalNAcT-2 and α GalNAcT-3) toward both glycolipid and glycoprotein potential acceptors and (b) the cell surface changes that may occur during the tumorigenic process under various growth conditions.

Scheme 1. N-Acetylgalactosaminyltransferases in guinea pig tumor cells.

We report herein results that establish the biosynthesis in vitro of globoside from globotriaosylceramide 1 in both 104C1 and 106B cells (Scheme 1). From pH optima and methylation studies, it became obvious that the 104C1 cell line contains only one β GalNAc transferase, β GalNAcT-2, and not the other β GalNAcT-1 enzyme (UDP-GalNAc:lactosylceramide or GM3:GalNAcT) previously reported to be present in guinea pig bone-marrow¹⁴. On the other hand, the presence of two pH optima (Fig. 4) for the enzyme from 106B-derived membranes suggested the presence of two enzyme activities (\(\beta\)GalNAcT-1 and \(\beta\)GalNAcT-2) in these cells. The radioactive product derived at pH 7.0 from 106B cell membranes showed the formation of only one type of linkage (Table V) after methylation. Both \(\beta \)Gal-NAcT-1 and β GalNAcT-2 activities (Scheme 1) are present in embronic chicken brains⁴¹⁻⁴³. Permethylation studies of the radioactive products (produced at pH 7.0) from both 104C1 and 106B have also established, for the first time, the biosynthesis of a β -D-GalNAc-(1 \rightarrow 3) linkage to the penultimate D-[3H]galactosyl⁴⁴ residue of the globoside product $(GalNAc\beta1\rightarrow3[^3H]Gal\alpha1\rightarrow4Gal\beta1\rightarrow4Glc\rightarrowCer)$. Conversion of 2 to 3, the radioactive product of the GalNAcT-3-catalyzed reaction. also gave a sharp precipitin band with anti-Forssman antibody.

It will be interesting to determine whether the α GalNAcT-3 activity is controlled by various growth conditions in these tumorigenic and nontumorigenic cell lines. Turning "on" and "off" the gene for the α GalNAcT-3 enzyme might be crucial to the oncogenic process in cell lines where Forssman antigen is necessary as an active antigen on the cell surface. It is also important to elucidate the roles of these two enzymes (β GalNAcT-2 and α GalNAcT-3) in the expression of Forssman-related (i.e., GalNAc α 1 \rightarrow 3GalNAc β 1 \rightarrow 3Gal \rightarrow R) glycoproteins on the surfaces of these cells. The last goal will be possibly reached only after the two enzymic activities have been solubilized and purified from these cell lines. Separation of these two enzyme activities with a detergent-solubilized preparation is in progress in our laboratory⁴⁵. It has been shown that the radioactive glycolipid may coprecipitate in a glycolipid–antiglycolipid system, perhaps owing to mixed-micelle formation⁴⁶. In order to prove the terminal GalNAc-linkage unambigously, further permethylation analysis of the Forssman-active enzymatic product is under way.

ACKNOWLEDGMENTS

The authors thank Dr. Tripti De for her help in the characterization of permethylated sugars and Mr. Thomas Brown for the purification of α - and β -hexosaminidases from clam.

REFERENCES

- 1 J. FORSSMAN, Biochem. Z., 37 (1911) 78-115.
- 2 T. YAMAKAWA, R. IRIE, AND M. IWANAGA, J. Biochem. (Tokyo), 48 (1960) 490-507.
- 3 T. YAMAKAWA, S. YOKOYAMA, AND S. HANDA, J. Biochem. (Tokyo), 53 (1963) 28-36.
- 4 A. MAKITA, M. IWANAGA, AND T. YAMAKAWA, J. Biochem. (Tokyo), 55 (1964) 202-204.
- 5 A. MAKITA, C. SUZUKI, AND Z. YOSHIZAWA, J. Biochem. (Tokyo), 60 (1966) 502-513.

- 6 S. HAKOMORI, B. SIDDIQUI, Y.-T. LI, S.-C. LI, AND C. G. HELLERQUIVST, J. Biol. Chem., 246 (1971) 2271-2277.
- 7 B. SIDDIQUI AND S. HAKOMORI, J. Biol. Chem., 246 (1971) 5766-5769.
- 8 M. F. MALLETTE AND R. L. RUSH, Immunochemistry, 9 (1972) 809-820.
- 9 T. TAKETOMI, A. HARA, N. KAWAMURA, AND M. HAYASHI, J. Biochem. (Tokyo), 75 (1974) 197-199.
- 10 S. J. Sung, W. J. Esselman, and C. C. Sweeley, J. Biol. Chem., 248 (1973) 6528-6533.
- 11 R. A. LAINE, C. C. SWEELEY, Y.-T. LI, A. KISIC, AND M. M. RAPPORT, J. Lipid Res., 13 (1972) 519-524.
- 12 B. SIDDIQUI, J. KAWANAMI, Y.-T. LI, AND S. HAKOMORI, J. Lipid Res., 13 (1972) 657-665.
- 13 Y. SEYAMA AND T. YAMAKAWA, J. Biochem. (Tokyo), 75 (1974) 837-842.
- 14 M. BASU, J.-L. CHIEN, AND S. BASU, Biochem. Biophys. Res. Commun., 60 (1974) 1097-1104.
- 15 J.-L. CHIEN, T. WILLIAMS, AND S. BASU, J. Biol. Chem., 248 (1973) 1778-1785.
- 16 T. ISHIBASHI, S. KIJIMOTO, AND A. MAKITA, Biochim. Biophys. Acta, 337 (1974) 92-106.
- 17 S. KIJIMOTO, T. ISHIBASHI, AND A. MAKITA, Biochem. Biophys. Res. Commun., 56 (1974) 177-184.
- 18 K. K. YEUNG, J. R. MOSKAL, J.-L. CHIEN, D. A. GARDNER, AND S. BASU, Biochem. Biophys. Res. Commun., 59 (1974) 252-260.
- 19 M. BASU, S. BASU, W. G. SCHANABRUCH, J. R. MOSKAL, AND C. H. EVANS, Biochem. Biophys. Res. Commun., 71 (1976) 385-392.
- 20 S. KIJIMOTO-OCHIAI, N. YOKOSAWA, AND A. MAKITA, J. Biol. Chem., 255 (1980) 9037-9040.
- 21 N. TANIGUCHI, N. YOKOSAWA, S. GASA, AND A. MAKITA, J. Biol. Chem., 257 (1982) 10631-10637.
- 22 N. TANIGUCHI AND A. MAKITA, J. Biol. Chem., 259 (1984) 5637-5642.
- 23 C. H. EVANS AND J. A. DiPAOLO, Cancer Res., 35 (1975) 1035-1044.
- 24 C. H. EVANS, A. M. COONEY, AND J. A. DIPAOLO, Cancer Res., 35 (1975) 1045-1052.
- 25 P. CUATRECASAS, Biochemistry, 12 (1973) 3547-3557.
- 26 M. BASU AND S. BASU, J. Biol. Chem., 248 (1973) 1700-1706.
- 27 K. DAS, M. BASU, AND S. BASU, Anal. Biochem., 143 (1984) 125-134.
- 28 H. BJÖRNDAL, C. G. HELLERQUIVST, B. LINDBERG, AND S. SVENSSON, Angew. Chem., Int. Ed. Eng., 9 (1970) 610-619.
- 29 Y.-T. LI AND S. C. LI, Methods Enzymol., 28 (1972) 714-720.
- 30 S. HAKOMORI, Vox Sang., 16 (1969) 478-485.
- 31 D. M. CARLSON, A. L. SWANSON, AND S. ROSEMAN, Biochemistry, 3 (1964) 402-405.
- 32 S. BASU, M. BASU, AND J.-L. CHIEN, J. Biol. Chem., 250 (1975) 2956-2962.
- 33 O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR, AND R. J. RANDALL, J. Biol. Chem., 193 (1951) 265-275.
- 34 M. BASU AND S. BASU, J. Biol. Chem., 259 (1984) 12557-12562.
- 35 K. A. Presper, Ph.D. Thesis, Univ. Notre Dame, Notre Dame, 1979.
- 36 S. H. OHANIAN, R. P. McCABE, AND C. H. EVANS, J. Natl. Cancer Inst., 67 (1981) 1363-1368.
- 37 IUPAC-IUB COMMISION ON BIOCHEMICAL NOMENCLATURE, Lipids, 12 (1977) 455–468.
- 38 S. HAKOMORI, S. M. WANG, AND W. W. YOUNG, Proc. Natl. Acad. Sci. U.S.A., 74 (1977) 3023–3027.
- 39 W. W. YOUNG, J. W. REGIMBAL, AND S. HAKOMORI, J. Immunol. Methods, 28 (1979) 59-69.
- 40 W. W. YOUNG, S. HAKOMORI, AND P. LEVINE, J. Immunol., 123 (1979) 92-96.
- 41 S. BASU, Ph.D. Thesis, Univ. Michigan, Ann Arbor, 1966.
- 42 J. C. Steigerwald, S. Basu, B. Kaufman, and S. Roseman, J. Biol. Chem., 250 (1975) 6727-6734.
- 43 K. DAS, R. J. SCHAEPER, M. BASU, AND S. BASU, Fed. Proc., Fed. Am. Soc. Exp. Biol., 43 (1984) 1566.
- 44 A. STOFFYN AND P. STOFFYN, Carbohydr. Res., 78 (1980) 327-340.
- 45 K. DAS, M. BASU, R. J. SCHAEPER, AND S. BASU, Fed. Proc., Fed. Am. Soc. Exp. Biol., 44 (1985) 1088
- 46 T. PACUSZKA AND J. KOŚCIELAK, J. Eur. Biochem., 64 (1976) 499-506.